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Abstract—A new numerical procedure is developed for the so-
lution of the electric field integral equation (EFIE) for arbitrary-
shaped microstrip structures. This approach is superior over
conventional EFIE techniques particularly in the low-frequency
region or where the structure to be analyzed is electrically small.
A pair of new basis functions is presented which are essential
to the solution in the entire frequency range of interest. The
new basis functions decompose the surface current density into
divergenceless and curl-free parts which essentially get decoupled
at the very low end of the frequency spectrum. Typical numer-
ical results are presented for certain examples to illustrate the
difference in the results between the two methods.

Index Terms—Microstrip antenna, scattering.

I. INTRODUCTION

M UCH PROGRESS has been made in the last decade
in the development of numerical solution procedures

for analyzing radiation and scattering by arbitrary-shaped
microstrip conducting structures [1], [2]. These procedures are
primarily based on the surface equivalence principle [1] and
the well-known method of moments [3] solution procedure
to solve the integral equations. For conducting bodies, the
solution of the electric field integral equation (EFIE), obtained
by enforcing the total tangential electric-field component to
zero on the metal patch, is a preferred choice. The effects of the
infinite dielectric slab and the conducting plane are taken care
of by the Green’s function. At present, there exist many user-
oriented computer codes based upon the EFIE solution, which
are capable of predicting the surface currents and scattered
fields accurately in the resonance region, which may be defined
as the range of frequencies for which the maximum dimension
of the patch is of the order of the wavelength. Although
the conventional EFIE solutions are highly accurate in the
resonance region, problems of inaccuracy and ill-conditioning
have been reported at very low frequencies [4]. Some work has
been done in this area to alleviate the ill-conditioning problem
[5] but these methods are cumbersome to apply for a general
arbitrarily shaped geometry.
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In this paper, an alternate method which is easily applicable
to both low and resonance frequency ranges is presented. The
new method is simple, efficient, accurate, and robust at all
frequencies. In the present method, the authors approximate
the scattering surface by planar triangular patches and define a
new pair of basis functions for the method of moment solution.
These basis functions decompose the surface current density
into divergenceless and curl-free parts which essentially get
decoupled at the very low end of the frequency spectrum.
Further, these new pairs of basis functions are also used as
testing functions to generate a diagonally dominant moment
matrix which is well conditioned at all frequencies [4].

II. ELECTRIC FIELD INTEGRAL EQUATION (EFIE)

To solve for the radiation from arbitrarily shaped planar
microstrip structures, the EFIE is utilized. In the EFIE for-
mulation the total tangential electric field on the conducting
radiating surface is equated to zero, i.e.,

on conducting patches. (1a)

If an equivalent current , on the conducting patches is
assumed to exist, then

i on conducting patches (1b)

and

(2)

where is the magnetic vector potential, is the scalar
potential. represents the excitation. Here represents
the electric field operator which produces an electric field due
to . The current density is situated over the infinite
dielectric layer and the infinite perfectly conducting ground
plane. The effects of the dielectric layer and the ground plane
are treated by the Sommerfeld Green’s function.

In order to solve for ; the method of moments is applied.
The triangular patches developed in [2], [5] are considered.
The surface is properly triangulated, i.e., defined by an appro-
priate set of faces, edges, vertices, and boundary edges. Instead
of the conventional triangular basis functions, the authors
utilize the new basis functions. This amounts to decomposing
the surface current density into divergenceless and curl-free
parts which essentially get decoupled at the low end of the
frequency spectrum [4].
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This new approach decomposes the surface current density
on triangular patches into divergenceless and curl-free parts
which essentially gets decoupled at the low end of the spec-
trum where numerical instability sets it. This is ideally suited
for electromagnetic analysis of planar microstrip structures
where the antenna (generally of the order of the wavelength) is
directly coupled with the feed structures (where transmission
lines are electrically small in dimensions). Such a decomposi-
tion leads to a separate calculation of the contribution to the
electric field due to the magnetic vector potential and the di-
vergence of the scalar electric potential. For electrically small
structures computation of with respect to becomes
critical. The dynamic part of the electric field is primarily due
to the component which decreases with frequency, whereas
the other term, increases with frequency. So even though

is much larger numerically with respect to , it is
the latter term which contributes to the final result. Hence,
robust numerical procedures need to be developed to solve
these problems.

This is accomplished as follows. The arbitrary-shaped mi-
crostrip patch antenna is subdivided into a number of triangular
patches [6] and a new set of basis functions are defined for
the patch.

III. D ESCRIPTION OF THENEW BASIS FUNCTIONS

In this section, the authors describe a pair of basis functions,
known as loop and patch basis functions, which are used to
approximate the unknown current. The authors assume that
the conducting patches are approximated by the new basis
functions.

A. Loop Basis Functions

The authors consider a region of the triangulated model
of the patch as shown in Fig. 1. The authors define an
elemental loop around theth vertex by joining the centroids
of the triangles and edge centers connected to the vertex
(see Fig. 1). The loop basis function for an internal vertex
(i.e., vertex not situated on the boundary for an open patch)
may be defined as

(3)

where is the edge number of theth edge in loop and

otherwise
(4)

In (3), is the number of faces, is the number of edges, and
is the number of boundary edges in the model. In (4),

is the height of the patch from the edge to the opposite
vertex, and is the vector betweenand the opposite vertex.
The vector is directed toward while is away from .

is the usual triangular-patch basis functions defined in
[1], [2]. Also note that one vertex loop must be deleted if the
surface is closed.

Fig. 1. Description of a loop basis function.

Fig. 2. Description of a patch basis function.

The term , and is positive if the loop orientation
is the same as the reference direction and is negative
otherwise.

B. Patch Basis Functions

By referring to Fig. 2, the patch basis functions for a
triangular patch may be defined as

(5)

where is the edge number of theth edge of face and
with the positive sign taken if is directed out

of face and the negative sign taken otherwise. is the
length of edge .

The current can thus be expanded as

(6)

which represents a decomposition of the current into the
divergence- and curl-free parts, respectively.

IV. GENERATION OF THE IMPEDANCE MATRIX

In this section, the mathematical steps leading to the method
of moment solution of the EFIE using the basis functions
defined earlier is presented. The authors know that the electric
field at the dielectric interface is given from a dipole of
moment by

(7)



UCKUN et al.: ANALYSIS OF ELECTROMAGNETIC SCATTERING FROM MICROSTRIP ANTENNAS 487

(8)

where

(9)

(10)

(11)

and is the contour of integration on the real axis from
to . The symbols are defined by

(12)

(13)

coth

(14)

(15)

(16)

(17)

and , , and are the unit vectors in , , and directions,
respectively. The tangential components of the fields at the
dielectric interface are evaluated when . In order to find
the electric field distribution on an arbitrarily shaped current
patch, (7) is convolved with the current distribution on the
patch.

The authors utilize Galerkin’s method so that the same basis
functions are also used as testing functions. The authors define
the usual inner product as

(18)

where the overbar represents the complex conjugate. Since
is real, the conjugate may be omitted.

With loop and patch basis functions the authors obtain

for (19)

and

for (20)

Note that in (19) since is defined over a closed path,
the scalar potential term term drops out of the equation.
This is an important factor in determining the stability of the
numerical procedure at low frequencies.

By approximating the potential and the field quantities with
their respective values at centroids of the testing triangle, and

Fig. 3. A pentagonal patch antenna.

following the similar mathematical steps as in [6] the authors
get the following equations:

(21)

and

(22)

where due to the particular choice of the basis functions the
potential at the th patch is given by:

(23)

where is the index of the th patch, and is the patch index
of the patch adjacent to and attached to theth nonboundary
edge of patch .

Substitution of the current expansion function given by (6)
into (21) and (22), and following the derivation steps as in
[6], yields a system of linear equations which may be
written in the following form as

(24)

where

(25)

and (26)
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Fig. 4. 20 log
10

jEEE�j at � = 0 plotted for different values of
�90� � � � 90.

Fig. 5. 20 log
10
jEEE�j at � = 90 plotted for different values of

�90� � � � 90.

and , and are submatrices and ,
and are column vectors. The elements of ,
and are given by

(27)

(28)

Fig. 6. 20 log
10
jEEE�j at � = 0 plotted for different values of

�90� � � � +90.

Fig. 7. 20 log
10
jEEE�j at � = 90 plotted for different values of

�90� � � � 90.

(29)

and

(30)

where

(31)
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Fig. 8. A truncated square patch antenna.

Fig. 9. 20 log
10

jEEE�j at � = 0 plotted for different values of
�90� � � � 90.

(32)

For the evaluation of the potential the authors use the follow-
ing:

(33)

Similarly, the element , and are given by

with (34)

Fig. 10. 20 log
10
jEEE�j at � = 90 plotted for different values of

�90� � � � 90.

Fig. 11. 20 log
10
jEEE�j at � = 0 plotted for different values of

�90� � � � 90.

with (35)

where

(36)

The integrals appearing in (31) and (32) may be evaluated
by the numerical procedures described in [1], [2]. Also, for
numerical efficiency, the potential integrals should be evalu-
ated on a face-to-face combination, as done in [2]. Then these
integral values may be multiplied by appropriate constants and
their contributions accumulated in the appropriate rows and
columns of the moment matrix.
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Fig. 12. 20 log
10

jEEE�j at � = 90 plotted for different values of
�90� � � � 90.

Fig. 13. A circular patch antenna with two stubs.

V. NUMERICAL RESULTS

In this section, some numerical results are presented to illus-
trate the difference in the results produced by the conventional
triangular patch modeling as opposed to this new procedure.
For all three examples to be described, the structures are
situated on an infinite dielectric slab of the complex dielectric
constant and of thickness .

As a first example, consider a pentagonal patch antenna of
dimensions as shown in Fig. 3. The analysis was done by
the new approach (marked A) as well as by the conventional
approach [2] marked B. The excitation is located on the first
nonboundary vertical edge at the open end of the transmission
line. The results of Figs. 4–7 for the various components of
the field for different angles of indicate that there is some
differences between the two approaches. The results of the
new method are somewhat different.

Fig. 14. 20 log
10
jEEE�j at � = 0 plotted for different values of

�90� � � � 90.

Fig. 15. 20 log
10
jEEE�j at � = 90 plotted for different values of

�90� � � � 90.

As a second example, consider a truncated rectangular patch
antenna of of a side is fed by a transmission vertical
edge of the transmission line. The excitation is located on
the first nonboundary vertical edge at the open end of the
transmission line. This is shown in Fig. 8. The field patterns
for the various components in Figs. 9–12 indicate that for this
case, the differences between the two methods are quite large.

As a third example, consider a circular microstrip patch
antenna with two stubs as shown in Fig. 13. Figs. 14–17
indicate that the new methods provide more accurate and
consistent results particularly for the component of the
electric field.

VI. CONCLUSION

A new EFIE is presented for the analysis of arbitrary-
shaped microstrip structures at low frequencies of the incident
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Fig. 16. 20 log
10

jEEE� j at � = 0 plotted for different values of
�90� � � � 90.

Fig. 17. 20 log
10
jEEE�j at � = 90 plotted for different values of

�90� � � � 90.

wave or the equivalent for electrically small structures. The
numerical procedure is robust, particularly for electrically
small structures, and of the same order of efficiency as that
of the earlier methods. Crucial to the formulation is the
development of a new set of basis functions which decompose
the surface current density into curl-free and divergenceless
parts. Typical numerical results are presented to illustrate the
applicability of the new method. Comparisons of the numerical
values with previous computations have been made and results

have been presented only for those cases where differences
have been observed.
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